Transcriptional regulation by Modulo integrates meiosis and spermatid differentiation in male germ line.
نویسندگان
چکیده
Transcriptional activation in early spermatocytes involves hundreds of genes, many of which are required for meiosis and spermatid differentiation. A number of the meiotic-arrest genes have been identified as general regulators of transcription; however, the gene-specific transcription factors have remained elusive. To identify such factors, we purified the protein that specifically binds to the promoter of spermatid-differentiation gene Sdic and identified it as Modulo, the Drosophila homologue of nucleolin. Analysis of gene-expression patterns in the male sterile modulo mutant indicates that Modulo supports high expression of the meiotic-arrest genes and is essential for transcription of spermatid-differentiation genes. Expression of Modulo itself is under the control of meiotic-arrest genes and requires the DAZ/DAZL homologue Boule that is involved in the control of G(2)/M transition. Thus, regulatory interactions among Modulo, Boule, and the meiotic-arrest genes integrate meiosis and spermatid differentiation in the male germ line.
منابع مشابه
Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage
Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 10...
متن کاملThe poly(A) polymerase GLD2 is required for spermatogenesis in Drosophila melanogaster.
The DNA of a developing sperm is normally inaccessible for transcription for part of spermatogenesis in many animals. In Drosophila melanogaster, many transcripts needed for late spermatid differentiation are synthesized in pre-meiotic spermatocytes, but are not translated until later stages. Thus, post-transcriptional control mechanisms are required to decouple transcription and translation du...
متن کاملI-51: The Role of the Transcription FactorGCNF in Germ Cell Differentiation and Reproductionin Mice
The germ cell nuclear factor (GCNF) is a member of the nuclear receptor super family of transcription factors. GCNF expression during gastrulation and neurulation is critical for normal embryogenesis in mice. GCNF represses expression of the POU domain transcription factor Oct4 during mouse post-implantation development in vivo. Oct4 is thus down-regulated during female gonadal development, whe...
متن کاملAndrogen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids.
Androgen receptor function is required for male embryonic sexual differentiation, pubertal development and the regulation of spermatogenesis in mammals. During spermatogenesis, this requirement is thought to be mediated by Sertoli cells and its genetic and pharmacological disruption is manifested in spermatocytes as meiotic arrest. Through studies of a hypomorphic and conditional allele of the ...
متن کاملTranscriptional and post-transcriptional control mechanisms coordinate the onset of spermatid differentiation with meiosis I in Drosophila.
The aly, can, mia and sa genes of Drosophila are essential in males both for the G2-meiosis I transition and for onset of spermatid differentiation. Function of all four genes is required for transcription in primary spermatocytes of a suite of spermatid differentiation genes. aly is also required for transcription of the cell cycle control genes cyclin B and twine in primary spermatocytes. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 32 شماره
صفحات -
تاریخ انتشار 2006